COP 4610: Introduction to Operating Systems (Fall 2016)

Operating System Structures

Zhi Wang
Florida State University

Content

Operating system services
User interface

System calls

Operating system structures

Virtual machines

Operating System Services

- Operating systems provides an environment for program execution and services to programs and users
- a set of services is helpful to (visible to) users:
user interface
program execution
/O operation
- file-system manipulation
- communication
- error detection
* another set of services exists for ensuring efficient operation of the system:
resource allocation
* accounting

protection and security

A View of Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program /O file communication e accountin
execution operations systems allocation g
error pro;itz}lon
detection . security
services

operating system

hardware

Operating System Services (User-Visible)

User interface

- most operating systems have a user interface (Ul).

- e.g., command-Line (CLI), graphics user interface (GUI), or batch
Program execution

- load and execute an program in the memory

- end execution, either normally or abnormally
1/0 operations

- a running program may require 1/O such as file or I/0O device
File-system manipulation

- read, write, create and delete files and directories

- search or list files and directories

- permission management

Operating System Services (User-Visible)

- Communications
* processes exchange information, on the same system or over a network
- via shared memory or through message passing
Error detection
- OS needs to be constantly aware of possible errors
- errors in CPU, memory, I/O devices, programs

- It should take appropriate actions to ensure correctness and consistency

Operating System Services (System)

Resource allocation
- allocate resources for multiple users or multiple jolbs running concurrently
many types of resources: CPU, memory, file, /O devices
- Accounting
- to keep track of which users use how much and what kinds of resources
Protection and security
protection provides a mechanism to control access to system resources
*access control: control access to resources
Isolation: processes should not interfere with each other
- security authenticates users and prevent invalid access to I/O devices
- achain is only as strong as its weakest link

protection is the mechanism, security towards the policy

System Programs

- System programs provide a convenient environment for program development and execution

- They can be divided into:
- file operations
- status information
- programming language support
- program loading and execution

- communications

- Most users’ view of OS is defined by system programs, not the actual system calls

User Operating System Interface - CLI

- CLI (or command interpreter) allows direct command entry
- aloop between fetching a command from user and executing it
It can be implemented in the kernel or by a system program
In UNIX, it is usually called shells, there are many flavors of shells
- Commands are either built-in or just names of programs

- If the latter, adding new features doesn’t require shell modification

User Operating System Interface - GUI

- User-friendly desktop metaphor interface
- users use mouse, keyboard, and monitor to interactive with the system
»icons represent files, programs, actions, etc
* Mmouse buttons over objects in the interface cause various actions
- open file or directory (aka. folder), execute program, list attributes
- invented at Xerox PARC
- Many systems include both CLI and GUI interfaces
+ Microsoft Windows is GUI with CLI “command” shell
- Apple Mac OS X as “Agua” GUI with UNIX kernel underneath

- Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Bourne Shell Command Interpreter

(] & Terminal B =3
File Edit View Terminal Tabs Help
fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O ti
sd0 0.0 0.2 0.0 0.2 0.0 0.0 0.4 0 O
sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
extended device statistics
device r/s w/s kr/s kw/s wait actv svc_t %w %b
fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
{sd0 0.6 0.0 38.4 0.0 0.0 0.0 82 O 0
sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O

(root@bg-nv64-vm) - (11/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# swap -sh

total: 1.1C allocated + 190M reserved = 1.3C used, 1.6C available
(root@pbg-nve4-vm)-(12/pts)-(00:53 15-Jun-2007)-(global)
~-(/var/tmp/systemn-contents/scripts)# uptime

12:53am up 9 min(s), 3 users, Tload average: 33.29, 67.68, 36.81
(root@bg-nv64-vm)-(13/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# w

4:07pm up 17 day(s), 15:24, 3 users, Tload average: 0.09, 0.11, 8.66
User tty Togin@ idle JCPU PCPU what
root console 15Jun0718days 1 Jusr/bin/ssh-agent -- /usr/bi
n/d
root pts/3 15Jun07 18 4 w N
root pts/4 15Jun0718days W
(root@pbg-nv64-vm)-(14/pts)-(16:07 02-Jul-2007)-(global) b,
-(/var/tmp/systen-contents/scripts)# v

The Mac OS X GUI

.' Grab File Edit [& &8 Windew Help g 4 15:06 EDT Mon 2 Jul
EIEE [fig-di (=)
3 T EHERIE o f_‘ o v E . B @ Q- seleaion B
@~ Favorites> Documents= [fusic= Movies= Pictures~ Desktonw Apolications= ZPBG- ZPBGE~ {Disk-
B © 2007-06s1usgrnde | Desktop @ Comouter [@ fo-dir |
ErD €) 2#5C) imw) bock) wsB-dir)]
Ty MNzme + Knd ~ Dete Modified | Size Apolicatizn
% Nerwark o FOF E124/07, 1.02°P\ 1% LB Skm
g Freedom St 3 o =G £713/07. 5578\ T 7B Inkscape
SiFr reCan. e v 0 pag © Fortabe Netamrz Crazhics Image E 392K8 Fredme .]h
& Macktoshi HD . oS v L23KE Ikscane |~
) Unitled ¥ b2 D TIFF Jourmat Today, 2230 B30 L KB Freasw \ =
2 Untitles 2 S
5 ZPEG P
«* ZPBGE 3 TIFF
& iDisk s
* Poter Baar Galvin's iFod 3
Previes Hax
Sradv I
b Yy Name: 7g-2.0a)
@ ptg . ag-2.2a 1t
A Apalications Xind: TIFF Cocunent
', Documents UTi: sucEcr
URL: zivs:é)
[Games CALVENT: PBCABLACKS N
| Udlties 1ZPEG e .
| tma - KE (901,236 bytes 996 CEEIS G free
- ata: 301,236 byles
U Deskiop Tnvsical: £81 KE 192,141
avorites
I ;“::: = = Mnllfed'
= Vovies Tletistoy > = Seiecion Path ~ Onnﬂ.
Picturac » fig-z.0a ¥ fg-20a Cru-p:
- [/ fig-dir nmlnslon' :
| Sites) Fathi /ValLmas '2P3G- J.Ill'lnl
+ Public L asa-dir zecklosE-cinfig-d Journler Drop Bo ¢
= | meck Jg-2.Ja.1iff
| Preferences Appliztior: Yreven
® Lbrary L mp Valume: ZPC K
e o ZPEG Capacity: 7354 (B
e Frae: 734 3CE
| projects . Format: M v
| consui: - M-un: Poirt: '\'Jllln"'7l’x~ =
= |6 | & |G| sitems 10f S iterns selected - 7343 GI aveilazle 5.1 G3uses s

. Adcress Book

oo Dictionary and Theszurus

'd_b! ﬁ Q, orerating system

Mema
|| Aople Computer In - Apple Computer Inc.
I Direczories | &:Aaplz Computer In
TiLlasz Import

Professional Mac

¥ —————— Dictianary

Opsereatsing sys-tem B
raun

the software 21 supporis a computer s hade funciions.
such as scheculin g tasks, execvting applicz tions. ar:l
contralling peripherals

G-Fa 1
(Platinum)dmy

main 1-803-MY-APPLE

alher 800-275-2273

home page hitpeffvmay.appe.co™

work 1 Infinite _oop
C_pert no CA 93014
U-ited S:ztes

System Calls

- System call is a programming interface to access the OS services
- Direct system call access usually requires to use assembly language
*e.g., Int Ox80 for Linux
- System call is typically wrapped in a high-level Application Program Interface (API)
- three most common APIs:
- Win32 API for Windows
- POSIX API for POSIX-based systems (UNIX/Linux, Mac OS X)
- Java API for the Java virtual machine (JVM)

- why use APIs rather than system calls?

System Calls

- Typically, a number is associated with each system call
- system-call interface maintains a table indexed by these numbers
+e.g., Linux 3.2.35 for x86 has 349 system calls, number O to 343
Kernel invokes intended system call and returns results
User program needs to know nothing about syscall details
it just needs to use API and understand what the APl will do

most details of OS interface hidden from programmers by the AP

System Call Parameter Passing

Parameters are required besides the system call number
- exact type and amount of information vary according to OS and call
- Three general methods to pass parameters to the OS
Register:
* pass the parameters in registers
- simple, but there may be more parameters than registers
Block:
* parameters stored in a memory block (or table)
- address of the block passed as a parameter in a register
- taken by Linux and Solaris
- Stack:
- parameters placed, or pushed, onto the stack by the program
- popped off the stack by the operating system

Block and stack methods don’t limit number of parameters being passed

Parameter

Passing via Block

— X

X: parameters
for call

load address X /

system call 13

register

use parameters
from table X

user program

-

operating system

code for
system
call 13

Execve System Call on Linux

Store syscall number in eax
Save arg 1 in ebx, arg 2 in ecx, arg 3 in edx
Execute int Ox80 (or sysenter)

Syscall runs and returns the result in eax

execve (“/bin/sh”, 0, 0)

eax: Ox0b
ebx: addr of “/bin/sh”
ecx: 0

AP| — System Call — OS Relationship

user application
open ()
user

mode
system call interface
kernel
mode A
| open ()
’ Implementation
i » of open ()
. system call

return

Standard C Library Example

C program invoking printf() liorary call, which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |«

return O;

)

user v
node
standard C library
ernel
node
Q/rite ()

write ()
system call

Types of System Calls

Process control
+ Create process, terminate process
load, execute, end, abort
- get process attributes, set process attributes
- wait for timer or event, signal event
- allocate and free memory
File management
- create file, delete file
+ open, close file
read, write, reposition

- get and set file attributes

Types of System Calls

Device management
request device, release device
read, write, reposition
- get device attributes, set device attributes
logically attach or detach devices
Information maintenance
- get/set time or date
- get/set system data
- get/set process, file, or device attributes
- Communications
- create, delete communication connection
+ send, receive messages
- transfer status information
- attach and detach remote devices

Windows and Unix System Calls

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject () wait ()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle () close()
Device SetConsoleMode () 1oetl ()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe ()
CreateFileMapping () shmget ()
MapViewOfFile() mmap ()
Protection SetFileSecurity() chmod ()

InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()

—xample: MS-DOS

- Single-tasking

- Shell invoked when system booted
-+ Simple method to run program
NO process created
- single memory space
loads program into memory, overwriting all but the kernel

program exit -> shell reloaded

MS-

DOS

—xecution

at system startup

free memory

running a program

free memory

command
interpreter

process

kernel

command
interpreter

(a)

kernel

(b)

—xample: FreeBSD

A variant of Unix, it supports multitasking

Upon user login, the OS invokes user’s choice of shell

Shell executes fork() system call to create process, then calls exec() to load
program into process

shell waits for process to terminate or continues with user commands

Free

BN

Running Multiple Programs

process D

free memory

process C

Interpreter

process B

kernel

Operating System Structure

Important principle: to separate mechanism and policy
mechanism: how to do it
- policy: what will be done
Many structures:
- simple structure
layered structure
modules
microkernel system structure

research system: exo-kernel, multi-kernel...

Simple Structure

No structure at all!
- written to provide the most functionality in the least space
- A typical example: MS-DOS
its interfaces and levels of functionality are not well separated

- the kernel is not divided into modules

MS-DOS Structure

application program

resident system program ’

MS-DOS device drivers

ROM BIOS device drivers ’

Layered Approach

- The OS is divided into a number of layers (levels)
- Each layer built on top of lower layers
* IS this strictly enforceable in the kernel?

- The bottom layer (layer 0), is the hardware; the highest (layer N) is Ul

Layered Operating System

user interface

layer O
hardware

UNIX

Limited by hardware functionality, the original UNIX had limited structure
UNIX OS consists of two separable layers
* systems programs
- the kernel: everything below the system-call interface and above physical hardware

- alarge number of functions for one level: file systems, CPU scheduling, memory
management ...

Interdependency of components makes it impossible to structure kernel strictly in layers

Example: memory manage and storage

Traditional UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling

cC handling swapping block /O page replacement

N character |/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Modules

Most modern operating systems implement kernel modules
uses object-oriented design pattern
each core component is separate, and has clearly defined interfaces
some are loadable as needed

Overall, similar to layers but with more flexible

Example: Linux, BSD, Solaris

http://www.makelinux.net/kernel_map/

http://www.makelinux.net/kernel_map/

Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable

miscellaneous
system calls

modules

executable
formats

STREAMS
modules

Microkernel System Structure

Microkernel moves as much from the kernel (e.g., file systems) into “user” space
- Communication between user modules uses message passing
Benefits:
- easler to extend a microkernel
- easler to port the operating system to new architectures
more reliable (less code is running in kernel mode)
Mmore secure
Detriments:
performance overhead of user space to kernel space communication

Examples: Minux, Mach, QNX, L4...

MINIX Layered Microkernel Architecture

User Space

[Cower | (Lo (T

Kernel Space

Mac OS X Structure

application environments
and common services

kernel

BSD

environment

Mach

—xokernel v.s. Normal Kernel

i A A

Normal Kernel Exokernel
Programs communicate with Libraries or Kernel

Programs can
communicate with
hardware much more

[
direct

[Library J [Library }
! '

[Programs

S

Virtual Machines

- A virtual machine takes layered approach to its logical conclusion
- a virtual machine encapsulates the hardware and whole software stack
- VM provides an interface identical to the underlying hardware
Host creates the illusion that the guest has its own hardware
Each guest is provided with a (virtual) copy of underlying computer

Example: VMware, VirtualBox, QEMU, KVM, Xen, Java, .Net

Virtual Machines

- First appeared commercially in IBM mainframes in 1972
- Multiple (different) operating systems can share the same hardware

- each VM is isolated from each other

- sharing of resource can be permitted and controlled

- commutate with each other and other physical systems via networking
- Benefit

- consolidate low-resource use systems to fewer busier systems

- strong isolation benefits security

- useful for development, testing

Virtual Machines

non-virtual machine

processes

+

kernel

hardware

(@)

rd

programming/
interface

virtual machine

processes
processes
processes
kernel kernel kernel
VM1 VM2 VM3

virtual-machine
implementation

hardware

(b)

VMware Architecture

application

application

application

application

guest operating
system

(free BSD)

virtual CPU
virtual memory
virtual devices

guest operating
system

(Windows NT)

virtual CPU
virtual memory
virtual devices

guest operating
system

(Windows XP)

virtual CPU
virtual memory
virtual devices

virtualization layer

l

host operating system

CPU

hardware

memory

|/O devices

Solaris 10 with Two Containers

user programs user programs user programs
system programs system programs system programs
CPU resources network addresses | network addresses
memory resources device access device access
CPU resources CPU resources
MEeMmOory resources | memaory resources

zZone 1 Zone 2

virtual platform
global zone device management

zone management

Solaris kernel

network addresses

device R device

Java Virtual Machine

Java program
.class files

1->

class loader

!

Java

Interpreter

o -+

4

host system

(Windows, Linux, etc.)

__ [/ Java API
.class files

Operating-System Debugging

- Debugging is to find and fix errors, or bugs
- OS generates log files containing error information
- dmesg and /var/log in Linux
- application failure can generate core dump file capturing process memory
- OS failure can generate crash dump file containing kernel memory

* Security issues?

“Debugging is twice as hard as writing the
code in the first place. Therefore, If you write
the code as cleverly as possible, you are, by

definition, not smart enough to debug it.”

— Kernighan’s Law

Solaris 10 dtrace Following System Call

- DTrace (SystemTap, Kprobes) allows live instrumentation of kernel

+ probes fire when code is executed, capturing state data and sending it to
consumers of those probes

./all.d ‘pgrep xclock'® XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTION
-> XEventsQueued
-> XEventsQueued
-> XllTransBytesReadable
<—- XllTransBytesReadable
-> XllTransSocketBytesReadable
<— XllTransSocketBytesreadable
-> ioctl
-> loctl
-> getf
-> set active fd
<- set active fd
<— getf
-> get udatamodel
<— get udatamodel

(@]

oNeNoNeNeNeNeoNolNoNoNoNelle
ARARARARNCCOCaCaca

-> releasef
-> clear active fd
<- clear active fd
-> cv_broadcast
<— cv_broadcast
<— releasef
<- loctl
<- loctl
<— _XEventsQueued
<— XEventsQueued

coooooooooO-
CcorRAAAAAA

—nd of Chapter 2

